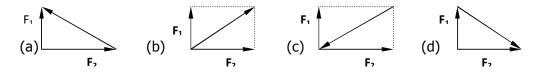

Chapter 5: FORCE AND MOTIN I

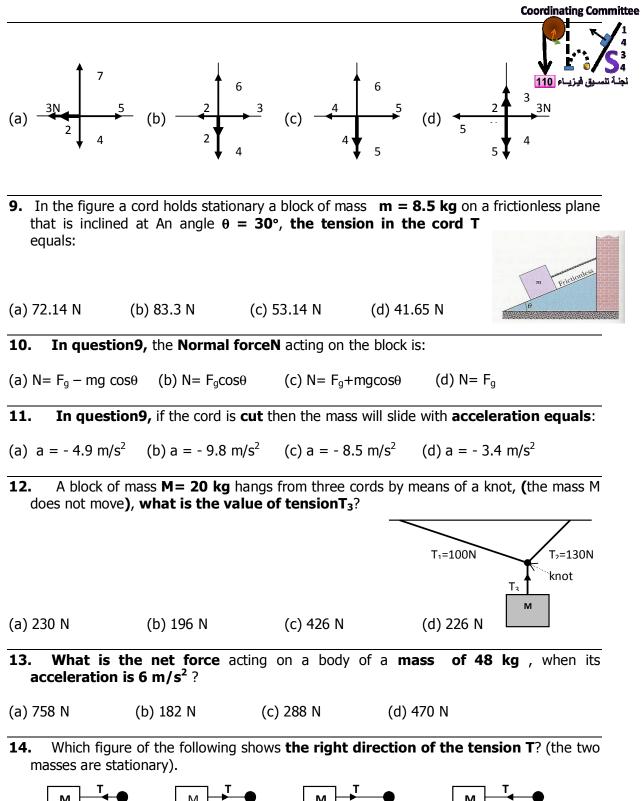

1. The figures below shows four situation in which forces act on a block that lies on a frictionless floor. In which figure the block has the **greatest acceleration**?

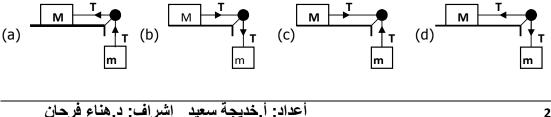
- 2. A force of 0.2 N acts on a mass of 100 g, what is its acceleration?
- (a) 2 x 10 $^{-2}$ m/s² (b) 2 x 10 $^{-6}$ m/s² (c) 2 x 10 $^{-3}$ m/s² (d) 2 m/s²
- **3.** A man **pulls** a box of **mass 3 kgvertically upward** with a force of magnitude **40 N**. What is the **acceleration of the box**?

(a) $a = \frac{T - mg}{m}$ (b) $a = \frac{mg - T}{m}$ (c) $a = \frac{T + mg}{m}$ (d) $a = \frac{m}{T + mg}$

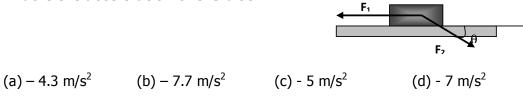
4. Which of the following figures correctly show the vector addition of forces F_1 and F_2 ?

5. If the **1 kg** body has an **acceleration of 2 m/s²** at an angle of **20°** above the positive direction of the x-axis. What is the **net force** in unit vctor notation?


(a) $\vec{F} = 0.34\hat{i} + 0.94\hat{j}$ (b) $\vec{F} = 1.88\hat{i} + 0.68\hat{j}$ (c) $\vec{F} = 0.68\hat{i} + 1.88\hat{j}$ (d) $\vec{F} = 0.94\hat{i} + 0.34\hat{j}$


- **6.** Two forces act on a particle that moves with **constantvelocity** $\vec{v} = 3\hat{i} 4\hat{j}$ **m/s**, one of the forces is $\vec{F}_1 = 2\hat{i} 6\hat{j}$ **N**, what is the other force?
- (a) $\vec{F}_2 = 2\hat{i} 6\hat{j}$ (b) $\vec{F}_2 = 6\hat{i} 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$
- 7. A particle has a weight of 22 N at a point where g = 9.8 m/s², what are its mass and weight at a point where g = 0 ?

(a) m = 2.2 kg	(b) m = 0	(c) m = 0.45 kg	(d) m = 0
W = 0	W = 2.2 N	W = 0	W = 45 N


8. In which figure of the following the y-component of the net force is zero?

أعداد أخديجة سعيد إشراف دهناء فرحان

15. Two forces act on a block of mass m = 0.5 kg that Moves along the x-axis on a frictionless table, $F_1 = 3 \text{ N}$ and $F_2 = 1 \text{ N}$ directed at angle $\theta = 30^\circ$ as shown, What is the acceleration of the block?

16. If $m_1 = 2$ kg and $m_2 = 4$ kg and the same force is applied to both masses, then the ratio of their accelerations is:

- (a) $\frac{a_2}{a_1} = \frac{1}{2}$ (b) $\frac{a_2}{a_1} = 2$ (c) $\frac{a_2}{a_1} = \frac{1}{4}$ (d) $\frac{a_2}{a_1} = 4$
- **17.** A force **F** applied to a body of mass m_0 giving it an acceleration a_0 , what is the mass of a body **x** if the same force is applied to it and accelerate it by a_x ?

(a)
$$m_x = m_0 \frac{a_x}{a_0}$$
 (b) $m_x = m_0 \frac{a_0}{a_x}$ (c) $m_x = \frac{a_x}{a_0}$ (d) $m_x = \frac{a_0}{a_x}$

18. In the figure, two forces acting on a box of mass **m** moving over a **frictionless** ice along the **x-axis**.

What is the **acceleration** of the box?

(a)
$$a_x = \frac{F_1 + F_2 \cos\theta}{m}$$
 (b) $a_x = \frac{F_2 \cos\theta - F_1}{m}$ (c) $a_x = \frac{F_2 \cos\theta}{m}$ (d) $a_x = \frac{F_1 - F_2}{m}$

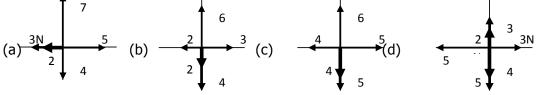
19. The magnitude of the **centripetal force** is

(a)
$$F = m \frac{v^2}{R^2}$$
 (b) $F = \frac{v^2}{R}$ (c) $F = m \frac{v}{R}$ (d) $F = m \frac{v^2}{R}$

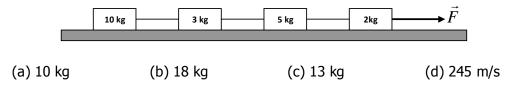

1. What is the **gravitational force** on a man of mass **m** when he is sitting in a car that accelerates at **a** ?

(a)
$$F_g = m a$$
 (b) $F_g = m (g - a)$ (c) $F_g = m g$ (d) $F_g = m (a - g)$

- **20.** Two forces act on a particle that moves with **constant velocity** $\vec{v} = 3\hat{i} 4\hat{j}$ **m/s**, one of the forces is $\vec{F}_1 = 2\hat{i} 6\hat{j}$ **N**, what is the other force?
- (a) $\vec{F}_2 = 2\hat{i} 6\hat{j}$ (b) $\vec{F}_2 = 6\hat{i} 10\hat{j}$ (c) $\vec{F}_2 = -2\hat{i} + 6\hat{j}$ (d) $\vec{F}_2 = -6\hat{i} + 10\hat{j}$
- **21.** The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what **total mass is accelerated to the right byCord 2**?

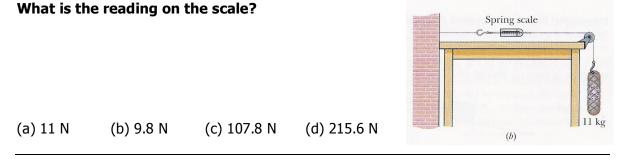


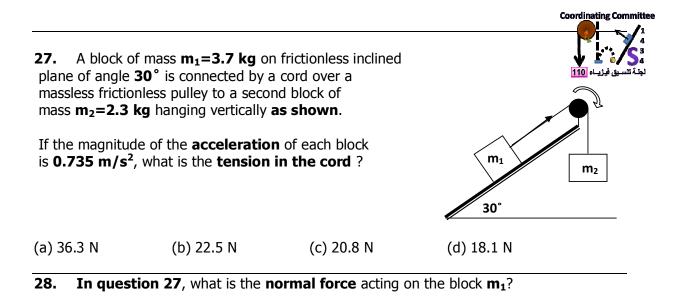
m



22. A particle has a weight of 22 N at a point where g = 9.8 m/s², what are its mass and weight at a point where g = 0 ?

(a) m = 2.2 kg (b) m = 0 (c) m = 0.45 kg (d) m = 0 W = 0 W = 2.2 N W = 0 W = 45 N23. In which figure of the following the **y-component of the net force is zero**?


24. The figure shows a train of four blocks being pulled across a frictionless floor by force \vec{F} , what total mass is accelerated to the right by force \vec{F} ?


25. Three forces act on a particle that moves with **unchanging** velocity $\overline{v} = 2\hat{i} - 7\hat{j}$, two of the forces are $\vec{F_1} = 2\hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{F_2} = -5\hat{i} + 8\hat{j} - 2\hat{k}$. what is the **third force** ?

(a) $3\hat{i} - 11\hat{j} + 4\hat{k}$ (b) $7\hat{i} - 5\hat{j}$ (c) $-3\hat{i} + 11\hat{j} - 4\hat{k}$ (d) $-7\hat{i} + 5\hat{j}$

26. An **11 kg** object is supported by a cord that Runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall.

أعداد أخديجة سعيد إشراف دهناء فرحان

 $\begin{array}{cccc} (a) & N=F_g & - & m_1g & (b) \ N=F_g cos \theta & & (c) & N=F_g & + & m_1g & (d) \ N=F_g \\ & & cos \theta & & cos \theta \end{array}$

29. In question **27**, if the cord is cut what is the **acceleration** of mass m_2 ?

(a)
$$a = -4.9 \text{ m/s}^2$$
 (b) $a = -9.8 \text{ m/s}^2$ (c) $a = -0.735$ (d) $a = \text{zero} \text{ m/s}^2$

30. If the **1 kg** body has an **acceleration of 2 m/s**² at an angle of **20**° above the positive direction of the x-axis. What is the **net force** in unit vctor notation?

(a) $\vec{F} = 0.34\hat{i} + 0.94\hat{j}$ (b) $\vec{F} = 1.88\hat{i} + 0.68\hat{j}$ (c) $\vec{F} = 0.68\hat{i} + 1.88\hat{j}$ (d) $\vec{F} = 0.94\hat{i} + 0.34\hat{j}$

Test bank Chapter 5 solutions

1. a
2. d
3. a
4. b
5. b
6. c
7. a
8. b
9. d
10. b
11. a
12. b
13. c
14. c
15. a
16. a
17. b
18. b
19. d
1. (after question 19) (c)
20. c
21. c
22. a
23. b
24. 20 kg
25. a
26. c
27. с
28. b
29. b
30. b